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Abstract

Mechanical signals with amplitude modulated are characterized by periodic time-varying ensemble
statistics and can be considered as cyclostationary. In this paper, the second order cyclic statistics, i.e. cyclic
autocorrelation and cyclic spectrum, are introduced. A method of demodulation based on cyclic
autocorrelation is derived from a signal model. The modulators and carrier are exhibited, respectively, in
low- and high-frequency band of cyclic frequency domain. The three-dimensional spectral correlation
figure, which represents cyclic frequency, frequency and spectral correlation strength simultaneously, is
developed to express the demodulation results clearly. The method is tested by simulation signal and
applied to diagnose rolling bearing faults. It obtained more information than other conventional methods,
such as the frequency domain and the envelop detection. Furthermore, its effect is demonstrated by
comparing with the wavelet envelope demodulation.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The vibration signals of rotating machinery consist of random and periodic components. Their
autocorrelation function exhibits time-varying, periodic and cyclostationary character. The
periodic statistics contain the information of mechanical faults and often appear periodic
correlated random impulses or modulation. Such a property can be found in the signals of faulty
rolling bearings as well as faulty gears. As we know, the amplitude-modulated mechanical signals
are difficult to be demodulated according to the ordinary theory based on the stationary
assumption, especially when the modulators are weak and are buried in noise, so the stationary
assumption has impeded the development of diagnosis technology.
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Lately, the concept of cyclostationary statistics, or periodic time-varying ensemble statistics, is
interested in machinery diagnosis. Cyclic statistics have been used as a tool for exploiting
cyclostationarity in diagnostics practice. For example, the application of the degree of
cyclostationarity to identify machine condition [1], the cyclic frequency found by spectral
correlation graph to diagnose the machine fault [2]. However, these methods cannot be extended
to solve general diagnostic problems, such as demodulation. The results are also too abstract to
use in practice from the engineering point of view.

This paper discusses the formulas and tests based on the cyclic statistics. First, the second order
cyclic statistics, or the cyclic autocorrelation and cyclic spectrum, are introduced. Then a
mechanical signal model is developed to derive the signal demodulation formulas based on the
cyclic autocorrelation. The signal demodulation technology can be applied to separate out the
modulators effectively, especially for the weak modulators that cannot be detected by other
conventional technologies, such as frequency domain and envelope detection. In order to exhibit
the results clearly, a three-dimensional spectral correlation figure is developed, which located the
modulators and carrier in low- and high-frequency band of cyclic domain, respectively. In
applications, a simulated signal with amplitude modulated is used to verify the method. Then the
mechanical signals of faulty rolling bearings (race spalling and rolling elements flaking) are
diagnosed. In comparison with the wavelet envelop, the technology is proved to be more suitable
to diagnose mechanical faults and can obtain more information.

2. Cyclic statistics and demodulation theory

In this section we present the theory of second order cyclic statistics and deduce demodulation
formulas based on a signal model of amplitude modulated.

2.1. Cyclic autocorrelation

A zero-mean random process x(t) generally possesses a time-varying autocorrelation

rxðt; tÞ ¼ EfðxðtÞx ðt � tÞg ð1Þ

where Ef�g is the mathematic expectation operator, t is the time lag. If the autocorrelation is
periodic with a period t0, the resamples from xðtÞ at;y; t � nt0; y; t � 2t0; t � t0; t; t þ t0; t þ
2t0;y; t þ nt0;y; are satisfied ergodic condition and can be estimated with time average

rxðt; tÞ ¼ lim
N-N

1

2N þ 1

XN

n¼�N

xðt þ nt0Þx ðt þ nt0 � tÞ: ð2Þ

Since rxðt; tÞ is periodic, it admits a Fourier series representation,

rxðt; tÞ ¼
XN

m¼�N

raxðtÞe
jð2p=t0Þmt ¼

XN
m¼�N

raxðtÞe
j2pat; ð3Þ
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where a=m/t0 and m is an integer. rxðt; tÞ includes harmonics of the fundamental period t0. Its
Fourier coefficients raxðtÞ can be given by

raxðtÞ ¼
1

t0

Z þt0=2

�t0=2

rxðt; tÞe�j2pat dt: ð4Þ

When there exist more than one period t0 in rxðt; tÞ; formula (4) should be modified as

raxðtÞ ¼ lim
tn-N

1

tn

Z þtn=2

�tn=2

rxðt; tÞe�j2pat dt ¼ rxðt; tÞe�j2pat
� �

t
: ð5Þ

The function raxðtÞ; which represents the strength at frequency a in rxðt; tÞ; is referred to as the
cyclic autocorrelation. Clearly, it is not always reduced to zero for all non-zero a if x(t) is
cyclostationary. The set fa : raxðtÞa0g is referred to as the set of cyclic frequency. The non-zero
cyclic frequencies characterize the cyclostationarity of signal.

The discrete form of the cyclic autocorrelation can be derived from (5)

raxðkTsÞ ¼ rxðnTs; kTsÞe�j2panTs
� �

nTs
: ð6Þ

2.2. Cyclic spectrum

The cyclic spectrum can be obtained by means of Fourier transforming the cyclic
autocorrelation

Sa
xð f Þ ¼

Z
N

�N

raxðtÞe
�j2pf t dt: ð7Þ

Similarly, the discrete form Sa
xðkfsÞ corresponds to raxðkTsÞ: The cyclic spectrum, which is

composed of spectral correlation functions, can detect the cyclic frequencies in signal [3]. A cyclic
frequency has a large spectral correlation value. We will exhibit the results of the cyclic spectrum
by means of the spectral correlation (SC) figure later, i.e., the three-dimensional figure of cyclic
frequency–frequency–spectral correlation magnitude (SCM).

2.3. Demodulation theory

The demodulation theory is based on a most general mechanical signal model with amplitude
modulated. It separates out the modulators in cyclic domain.

The signal model is

xðtÞ ¼ b þ
XN

i¼1

cos 2pfcit

 !
cos 2pf0t; ð8Þ
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where i ¼ 1; 2;y;N is the number of modulators, fci and f0 denote the modulator and the carrier,
respectively, f0 > ð5B10Þ maxð fciÞ; b is a constant. The cyclic spectrum (single side) is as follows,
its derivation in detail can be found in Appendix A.

Sa
xðf Þ ¼

2b2 þ b

4
dð f þ f0Þ þ

b þ 1

8

PN
i¼1fd½ f þ ð f0 þ fciÞ
 þ d½ f þ ð f0 � fciÞ
g a ¼ 0;

b2

4
dð f þ f0Þ a ¼ 2 f0;

1

16

PN
k¼1 d½ f þ ð f07fckÞ
; a ¼ 2 f07ð fci þ fckÞ;

1

16

PN
k¼1 d½ f þ ð f08fckÞ
; a ¼ 2 f07ð fci � fckÞ;

b

8
f
PN

k¼1 d½ f þ ð f07fckÞ
 þ dð f þ f0Þg; a ¼ 2 f07fci;

1

16

PN
k¼1 d½ f þ ð f0 � fckÞ
; a ¼ fci þ fck;

1

16

PN
k¼1 d½ f þ ð f0 þ fckÞ
; a ¼ j fci � fck j;

b

8
f
PN

k¼1 d½ f þ 2ð f0 � fckÞ
 þ dð f þ f0Þg; a ¼ fci;

0 others:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

Here we only select positive value of a for mechanical engineering applications. Since Sa
xð f Þa0 or

raxðtÞa0 at the set of cyclic frequency A ¼ f0; fci; fci7fck; 2f0; 2f07fci; 2f07ð fci7fckÞg ði; k ¼
1; 2y;N; number of modulatorsÞ; so the demodulation based on the cyclic autocorrelation can
be summarized as following:

(1) Since f0 > ð5B10ÞmaxðfciÞ; the components of signal can be separated into two parts in cyclic
domain: the low-frequency band A1 ¼ ffci; fci7fckg and the high-frequency band A2 ¼
f2f0; 2f07fci; 2f07ðfci7fckÞg: When i=1, there is one modulator, the two parts in cyclic
domain become A1 ¼ ffc; 2fcg and A2 ¼ f2f0; 2f07fc; 2f072fcg: Their effects are shown in
Section 3.1.

(2) The low-frequency band only contains the information of modulators while the high-
frequency band contains information of both carriers and modulators. Combining the two
parts makes the demodulation process more reliable.

(3) When b=0 or approaches zero, the low-frequency band A1 ¼ ffci7fckg; i.e., there exist
intersections between modulators, the demodulation will become much more complex. In this
case, combining the high-frequency band will be more effective.

Thus, the key demodulation operation is to search a set of cyclic frequencies of the
modulators and to exhibit them correctly. This process is to scan in cyclic domain
with a suitable cyclic frequency interval and find modulators. Fig. 1 gives the implementation
diagram.
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3. Applications

3.1. Simulation signal

The simulation signal we take is

xðtÞ ¼ 1 þ cosð2pfctÞ½ 
cosð2pf0tÞ;

where the modulator fc=7 Hz, the carrier f0=80 Hz, the sample frequency is 1000 Hz and the
number is 8192. The scanning interval in Fig. 2 is 1 Hz. Let n and k in Eq. (6) take 4096 and 1024,
for each cyclic frequency (scanning interval) a set of cyclic autocorrelation data are obtained.
Then applied discrete Fourier transformation (DFT) to the data, we can get its cyclic spectrum
that is expressed by a continuous curve in the spectral correlation figure. The local maximum
values in the figure may be corresponding to cyclic frequencies.

The demodulation results of the simulation signal are shown in Fig. 2, Fig. 2a and b exhibit the
information in low- and high-frequency band of the cyclic domain. In Fig. 2a there are two peaks
at a=7 Hz (fc) and 14 Hz (2fc). In Fig. 2b the peaks occur at a=160 Hz (2f0), 153 Hz (2f0�fc) and
167 Hz (2f0+fc), 146 Hz (2f0�2fc) and 174 Hz (2f0+2fc), i.e., the intersections points among the
modulators and the carrier. The results accord with conclusion (1) drawn in Section 2.3 and
indicate that the modulators could be detected by scanning in the low-frequency band of cyclic
domain.

3.2. Mechanical fault signals

In vibration signals of complex mechanical components, such as rolling bearings, the fault
information is often contained in the modulators. When the modulators are weak and are buried
in noise or other higher energy disturbances, the present conventional methods, such as FFT and
envelope spectrum, can fail to detect them. However, in this case the demodulation based on the
cyclic autocorrelation shows its advantages.
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The signals were sampled from the test rig, which consisted of a rotating shaft driven by an AC
motor through a coupling and a gearbox. A rolling bearing of NSK308 held at the end of shaft.
An accelerometer is attached to the bearing to pick up the signals. We can replace the bearing to
test different kinds of faults. The related parameters are listed in Table 1.

The bearings faults create some sideband around the natural frequency of the bearing system.
These faults characteristic frequencies are listed in Table 2 and their calculating formulas can be
found in Appendix B. The demodulation based on the cyclic autocorrelation is applied to the four
signals, which are normal, outer race fault, inner race fault and ball fault. The analysis frequency
range is 3500–4500 Hz. In order to measure the characteristic frequencies of faulty bearings,
different scanning intervals are selected and they are listed in Table 3. Two intervals in one figure
can avoid unnecessary computation.
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Fig. 2. The SC figure of the simulation signal: (a) scanning in low-frequency band and (b) scanning in high-frequency

band.
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Table 2

The diagnosable information using four methods

Fault type Characteristic

frequency (Hz)

Time series

method

Spectrum (Hz) Wavelet

envelope (Hz)

Cyclic statistics

(Hz)

Normal bearing No No No No No

Outer race spalling 80.6 1 impulse 80.5 80 80, 27

Inner race spalling 129.0 2–3 impulses 26.7 129 27, 128

Ball flaking 53.7, 10 No No No 7, 107

Table 3

The scanning intervals in the SC figures

Fig. 4 Fig. 5 Fig. 6 Fig. 7a Fig. 7b

Origin: interval: end 17:10:40 17:10:40 10:17:200 4:3:11 95:1:120

50:10:150 50:10:150 27:10:207

Table 1

The parameters of the test and the bearing itself

The dimensions of the bearing Natural

frequency

Sampling

frequency

Sampling

number

Rotating

frequency

Eight balls with 15 mm in diameter and

65 mm in the pitch diameter

3827 Hz 20 kHz 8192 26.2 Hz

Fig. 3. SC figure of normal bearing.
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Fig. 3 is the spectral correlation (SC) figure of the normal bearing. There is no distinct peak,
which means the signal is stationary. Figs. 4 and 5 show the spectral correlation figures of the
bearing with outer race spalling and inner race spalling. Since the two kinds of faults create
obvious impulses in the spectra, their fault features can be found easily with conventional
methods; however, these methods cannot identify other weak modulators, such as 27 Hz in Fig. 4
and 129 Hz in Fig. 5.

Fig. 6a, the figure of the bearing with faulty rolling elements, exhibits two modulators 7 and
107 Hz, which are corresponding to the ball rotating frequency 10 Hz and impulse frequency
53.7 Hz. Since the frequencies are unstable due to the existed sliding effect inside the faulty
bearing, they lead to irregular sideband around the natural frequency. So in this case the
modulators are difficult to be detected using conventional methods. But the demodulation based
on the cyclic autocorrelation can identify the weak modulators very efficiently. Because the
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Fig. 4. SC figure of outer race spalling.

Fig. 5. SC figure of inner race spalling.
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bearing characteristic frequencies are based on the assumption of pure rolling motion, in reality,
the sliding effect will cause the deviation of the calculated characteristic frequencies, especially for
fault of rolling elements. This causes the deviation between the theoretical characteristic frequency
10 and 7 Hz. Fig. 6b is the figure scanning around 107 Hz. It exhibits the modulator of 8 Hz that
verifies the existence of the sliding motion existing inside the bearing.

3.3. Comparison with wavelet envelope demodulation

We also give the results shown in Fig. 7 using the wavelet envelop [4] to analyze the above faulty
signals. The wavelet envelope method utilizes the advantage of its band pass property and selects
the optimal frequency band to detect the impulse of the signals. It separates out the modulators
using the envelope demodulation. The method cannot detect the weak modulators due to the
unclear impulse in time domain, such as the fault of rolling elements.

The analysis demonstrates that the demodulation method based on the cyclic autocorrelation
can obtain more information and is more effective than other methods in bearing diagnosis. The
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Fig. 6. The SC figure of ball flaking: (a) the figure of ball flaking and (b) the figure around 107 Hz.
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diagnotic information with time and frequency domain, wavelet envelope and cyclic statistics is
listed in the Table 2.

4. Conclusions

The applications indicated that the second order cyclic statistics are suited to demodulate the
mechanical signals and can extract the fault features effectively. The spectral correlation figure can
exhibit the information clearly:

(1) The demodulation based on the cyclic autocorrelation can separate out the modulators and
the carrier from the signals of amplitude modulated even for the weak modulators with the
prerequisite of sufficient sample data. Because the noise is assumed a stationary random
process, it will vanish after the operation of cyclic autocorrelation with large sample data.
Ref. [5] indicates that the performance of suppressing noise by cyclic autocorrelation is
directly proportional to 1=

ffiffiffiffiffi
N

p
; where N is the sample number.

(2) The cyclic spectrum does not only contains the information in ordinary power spectrum
(a=0) but also in cyclic statistics (aa0). The spectral correlation figure exhibits modulators in
low-frequency band and both the carrier and modulators in high-frequency band of cyclic
domain. Thus the modulators information is redundant and this makes the diagnosis more
reliable.

(3) In comparison with the wavelet envelope for demodulated rolling bearing signal, the
demodulation of the cyclic autocorrelation does not require to select the strict frequency band
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Fig. 7. Wavelet envelope spectra: (a) wavelet envelope spectrum of the outer race spalling, (b) wavelet envelope

spectrum of the inner race spalling and (c) wavelet envelope spectrum of the ball flaking.

L. Li, L. Qu / Journal of Sound and Vibration 267 (2003) 253–265262



and filter, thus its diagnostic function is stronger and more practical, especially the signal
contains vague impulses (e.g., due to the fault on rolling elements). The cyclic statistics
provide an effective tool to diagnose mechanical fault.

(4) Theoretically speaking, the peaks in the cyclic spectrum can only appear at the cyclic
frequencies, but actually even aa0, there are lower peaks in certain range centering at a,
which does not affect the diagnosis result. Ref [6] discusses the problems deeply.

(5) It is important to select the scanning interval of cyclic frequency so that the cyclic
characteristics can be detected. The minimum value of the interval should be larger than the
frequency resolution [7]. When the characteristics are unknown in advance, the select and try
process may be repeated several times.

Appendix A

The derivation of the cyclic autocorrelation-based demodulation. The AM signal model is

xðtÞ ¼ b þ
XN

i¼1

cos 2pfcit

 !
cos 2pf0t:

For the sake of brevity, we reform the formulas as following:

xðtÞ ¼
b

2
e7j2pf0t þ

1

4

XN

i¼1

ðe7j2pfpit þ e7j2pfmitÞ;

e7j2pft ¼ eþj2pft þ e�j2pft; fpi ¼ f0 þ fci; fmi ¼ f0 � fci:

Then the Fourier coefficients of rxðt; tÞ at cyclic frequency a are given by

rxðt; tÞe�j2pat
� �

t

¼
b2

4
e7j2pf0t þ

b2

4
e7j2pf0t � e7j4pf0t þ

1

16

XN

i¼1

XN

k¼1

e7j2pfpkt e7j2p½2f0þðfciþfckÞ
t þ e7j2pðfciþfckÞt
� �"*

þ
1

16

XN

i¼1

XN

k¼1

e7j2pfmkt e7j2p½2f0�ðfciþfckÞ
t þ e7j2pðfci�fckÞt
� �

þ
1

16

XN

i¼1

XN

k¼1

e7j2pfpkt e7j2p½2f0�ðfci�fckÞ
t þ e7j2pðfciþfckÞt
� �

þ
1

16

XN

i¼1

XN

k¼1

e7j2pfmkt e7j2p½2f0þðfci�fckÞ
t þ e7j2pðfciþfckÞt
� �

þ
b

8

XN

i¼1

e7j2pfpit e7j2pð2f0þfciÞt þ e7j2pfcit
� �

þ
b

8

XN

i¼1

e7j2pfmit e7j2pð2f0�fciÞt þ e7j2pfcit
� �

þ
b

8

XN

i¼1

e7j2pf0t e7j2pð2f07fciÞt þ e7j2pfcit
� �#

e�j2pat

+
t

:
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Using the limit result [8]

lim
T-N

1

T

Z T=2

�T=2

ej2pft dt ¼ lim
T-N

sinð2pfT=2Þ
2pfT=2

¼ 0 ð fa0Þ ð10Þ

we deduced the cyclic autocorrelation (for positive a value):

raxðtÞ ¼

b2

2
þ

b

4

� �
e7j2pf0t þ

b

8
þ

1

8

� �PN
i¼1 e7j2pðf0þfciÞt þ e7j2pðf0�fciÞt
� �

a ¼ 0;

b2

4
e7j2pf0t; a ¼ 2f0;

1

16

PN
k¼1 e7j2pðf07fckÞt; a ¼ 2f07ðfci þ fckÞ;

1

16

PN
k¼1 e7j2pðf08fckÞt; a ¼ 2f07ðfci � fckÞ;

b

8

PN
k¼1 e7j2pðf07fckÞt þ e7j2pf0t

� �
; a ¼ 2f07fci;

1

16

PN
k¼1 e7j2pðf0�fckÞt; a ¼ fci þ fck;

1

16

PN
k¼1 e7j2pðf0þfckÞt; a ¼ j fci � fck j;

b

8

PN
k¼1 e7j4pðf0�fckÞt þ e7j2pf0t

� �
; a ¼ fci;

0 others:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Thus the cyclic spectrum (single side) is

Sa
xðf Þ ¼

2b2 þ b

4

� �
dðf þ f0Þ þ

b þ 1

8

PN
i¼1 d f þ f0 þ fcið Þ½ 
 þ d f þ f0 � fcið Þ½ 
f g; a ¼ 0;

b2

4
dð f þ f0Þ; a ¼ 2f0;

1

16

PN
k¼1 d½ f þ ð f07fckÞ
; a ¼ 2f07ð fci þ fckÞ;

1

16

PN
k¼1 d½ f þ ð f08fckÞ
; a ¼ 2f07ð fci � fckÞ;

b

8
f
PN

k¼1 d½ f þ ð f07fckÞ
 þ dð f þ f0Þg; a ¼ 2f07fci;

1

16

PN
k¼1 d½ f þ ð f0 � fckÞ
; a ¼ fci þ fck;

1

16

PN
k¼1 d½ f þ ð f0 þ fckÞ
; a ¼ j fci � fck j

b

8
f
PN

k¼1 d½ f þ 2ð f0 � fckÞ
 þ dð f þ f0Þg; a ¼ fci;

0 others:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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Appendix B

Cyclic autocorrelation calculation of bearing characteristic frequencies [9] (assuming pure
rolling) are based on the following data:

Rotating frequency of the shaft: fr=26.2 Hz;
Number of balls: n=8;
Pitch diameter: Dp=65 mm;
Ball diameter: d=15 mm.

The frequency characteristics for each kind of bearing fault are:

Outer race fault:
f0 ¼

n

2
1 �

d

Dp

� �
fr ¼ 80:6 Hz;

Inner race fault:
fi ¼

n

2
1 þ

d

D

� �
fr ¼ 129:0 Hz;

Rolling ball fault:
fb ¼

Dp

2d
1 �

d

Dp

� �2
 !

fr ¼ 53:7 Hz;

Rolling ball rotation:
fc ¼

1

2
1 �

d

Dp

� �
fr ¼ 10:0 Hz:
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